Metoddagen 2022 - Shafiqur Rahman, VTI

Moisture Damage in Pavements

- Moisture damage is a major concern for asphalt concrete (AC) pavements
- Moisture in all physical states (liquid, vapor and frozen) contributes to various forms of damages such as:
 - Stripping
 - Raveling
 - Rutting
 - Cracking

Moisture conditioning approaches

Drawbacks:

- Disregards the pumping action (short-term moisture processes)
- Do not correlate well with field performance
- Variable (lack of tight control on the water saturation)
- Long testing time (> 24 hours)

To overcome some of the drawbacks, the moisture induced sensitivity test (MIST) was developed.

The MIST conditioning method was the focus of this study.

5

MIST standar	d					
	ASTM D7870/D7870M -13 Moisture Conditioning Compacted Asphalt Mixture Specimens by Using Hydrostatic Pore Pressure					
	Sample size, mm (dia. x height)	150x100 or 100x63				
· · ·	Pressure	40 psi (275.79 kPa)				
	- ·	60°C (>PG60)				
	Temparature	50°C (<pg60 or="" td="" wma)<=""></pg60>				
	Number of cycles	3500				
	Recommended air void	6.5 to 7.5% or optimum (±0.5%)				
65		vti				

BVFF Project at VTI

The following five conditioning approaches were evaluated:

- MIST (0.28 MPa pore pressure, 40° C temperature)
 - 3500 cycles (3 specimens)
 - 7000 cycles (3 specimens)
 - 12000 cycles (3 specimens)
- TDOK 2017:0650: Five AC specimens submerged in 40° C water for 164 hours
- EN 12697-12: Three AC specimens submerged in 40° C water for 72 hours

13

d specimens w Maximum aggregate size (mm)	Bitumen content (%)	Binder PEN grade	Air voids (%)	Other information
Maximum aggregate size (mm) ourse) 11	Bitumen content (%)	Binder PEN grade	Air voids (%)	Other information
ourse) 11	6	70/100	5.0	
		70/100	5.0	
ourse) 11	6	70/100	8.0	
ourse) 11	6	70/100	5.0	Mix A with cut surfaces
ourse) 11	6	70/100	8.0	Mix B with added amines for improved water resistance
se) 16	4.8	100/150	6.0	
0	urse) 11 nurse) 11 e) 16	urse) 11 6 urse) 11 6 e) 16 4.8	urse)11670/100urse)11670/100e)164.8100/150	urse)11670/1005.0urse)11670/1008.0e)164.8100/1506.0

sults: E	Example	of group	oing						
_								Mean values	
		Required numbers of samples	Sample identity	Thickness	Diameter (mm)	Stiffness modulus	Air void (%)	Stiffness	
Group	Group Test type							modulus	Air void (%)
			(mm)	(mm)	(MPa)		(MPa)		
			d4	50.3	100.0	9213	5.5	. ,	
			d5	50.2	100.2	7953	-		
	Reference ITS	5	d11	49.8	100.3	8005	7.3	8557	6.6
			d14	50.1	99.9	8015	7.3		
			d25	50.2	99.9	9597	6.2		
	2 MIST 3500		d6	49.9	100.0	8048	6.7	8791	6.5
		3	d9	50.2	100.0	9196	6.0		
			d24	50.1	99.8	9129	6.8		
	3 MIST 7000 3	3	d13	50.2	100.0	8082	7.4	8420	7.5
			d20	50.3	99.8	8051	7.6		
			d27	50.2	100.0	9126	7.4		
	4 MIST 12000 3		d2	50.5	100.0	8090	7.2	8639	6.7
		3	d16	50.2	100.1	8731	7.2		
			d17	50.1	99.9	9095	5.8		
	5 EN	3	d15	50.2	100.0	8123	7.4		
			d18	50.1	99.9	8698	6.7	8449	7.2
		d22	50.3	99.9	8526	7.5			
			d7	50.1	100.1	8237	6.9		
			d8	50.3	100.0	8948	6.4		
	TDOK	5	d10	50.0	100.0	8591	6.8	8481	6.9
			d19	50.2	99.9	8196	7.5		
			d23	50.0	100.0	8433	6.9		

Future work

- MIST should be standardized
- Settings should be specified for different mix types and intended applications
- Should correlate well with field performance
- Acceptability criteria should be established for intended applications, traffic, climate and design life.
- Future studies should involve more mix types

Future work

- Current study focused on number of pore pressure cycles only
- Future studies should also involve pressure and temperature adjustments
- All settings should be practically based on calculated tire pressure, design ESALs and climatic conditions.
- Field studies should be conducted to validate correlations
- Predictive models should be developed

vti

