

# Durable Pavements for Urban Environments

SMA (ABS) – Sustainable Multipurpose Asphalt



#### **Current Traffic Situation**





#### The Challenges of Planning the Modern Road Network

- Increasing traffic volume
- Higher axle loads
- Noise reduction
- Use of recyclable materials
- Safety aspects
- Durability
- Drivers' comfort
- Need for economical technologies
- Budget constraints



#### **Budget Constraints**

- Stagnating or even decreasing funding for maintancance of existing road network
- Urgently needed maintenance activities are postponed
- Need for making the most out of the existing budget stretch the \$\$\$\$

Build it cheap

**BUILD IT CHEAP AND YOU BUILD IT TWICE!** 



#### **Budget Constraints**

# A trend away from ABS towards ABT because ABS is more expensive than ABT mixes Valid for the initial costs only!



# **The Concepts**





#### The Concepts

Dense Graded Mix ABT



# Gap Graded Mix ABS





#### **Stability in Dense Graded Asphalt Mixes**



#### **Better performance by:**

The MortarDryer mortar - higher stability

• The Aggregate Composition

Increase the amount in the biggest fraction - higher stability



#### **ABS – The Concept**

The stability in an ABS mix is obtained through the internal friction in the self-

suporting stone skeleton





#### **ABS – The Concept**



**Stones** 





**Mastic** 

**ABS** 



#### **ABS – The Concept**

- A self-supporting stone skeleton of crushed high quality coarse aggregates
- A binder rich mastic mortar
- Thicker binder films covering the aggregates
  - Reduced aging sensitivety extended service life
- Low air voids, which make the mix practically impermeable
  - Less surface area for oxidation/aging extended service life
- An efficient stabilization of the mastic in order to prevent its segregation from the coarse particles



#### **ABS – The Benefits**

- High resistance to permanent deformation
- Excellent skid resistance
- Reduced waterspray
- Elimination of aquaplaning
- Increased visibility of road markings
- Incorporation of reclaimed asphalt pavement (RAP) is possible
- Superior durability
- Low noise level
- Decreased life-time-costs



#### **Load Distribution on a Pavement**





#### **ABS - A Multi Tool**





#### **ABS - A Multi Tool**

- ABS wearing courses
  - o ABS
  - o ABS plus
  - o ABS (ultra) thin layer
- ABS binder course
- ABS base course
- ABT Duopave
- (PA)





#### **ABS – A Multi Tool**



**ABS** surface course



Noise reducing ABS plus



**ABS** binder course



# "Standard" Road Applications





#### **Bus Lanes & Industrial Areas**





#### **Container Terminal Bremerhaven**





# A9/A99 Allianz Arena, Munich





# Frankfurt Airport – 3 x Runways





# **Buckingham Palace - London**





#### Formula 1 Racetrack Hermanos Rodriguez – México





#### **Urban Road Network**





#### **Urban Road Network – The Challenges**

- Limited funding
- Noise reducing surfaces
- Long durability
- Minimize traffic disturbance



#### **Urban Road Network - The Solution**





ABS 8 ABS 5



#### The Solution – ABS Thin Layers

- Limited Funding
  - o Paving thickness 1,5 to 3,0 cm
  - With one ton of asphalt mix up to 25 m² of surface course can be paved
  - Initial costs similar to ABT mixes



#### The Solution – ABS Thin Layers

- Noise reducing surfaces
  - Coarse texture "captures" rolling noise
  - Reduction of up tp 5 dB(A)
- Extended durability
  - No to minor rutting due to thin layer. Burden is carried by the binder/base layers
  - Good relaxation properties due to high binder content no cracking
  - Reduced aging due to thick binder films covering the aggregates



#### The Solution – ABS Thin Layers

- Minimize traffic disturbance
  - Faster paving even possible during night
  - Compaction-friendly asphalt mix
  - Ease of manual paving
  - Earlier opening to traffic due to faster cooling, hence reduced down time









Berlin / Germany - ABS 8; Year of construction: 2012





Hamburg / Germany - ABS 8





Hannover / Germany - ABS 5





Munich / Germany - ABS 5





Denmark - ABS 6





**Heerenveen / Netherlands - ABS 5** 



# **Projects**



Olympic Village - Rio de Janeiro - Olympic Games 2016



#### **Economical Situation**

# A trend away from ABS towards ABT because ABS is more expensive than ABT mixes Valid for the initial costs only!



### **Economical Situation**

#### **Life Cycle Cost Analysis**

|                  | ABS    | ABT    |
|------------------|--------|--------|
| Initial costs    | Higher | Lower  |
| Maintenance      | Late   | Early  |
| Rehabilitation   | Late   | Early  |
| User delay costs | Lower  | Higher |
| Life-time        | Higher | Lower  |
| Life-time-costs  | Lower  | Higher |



# **Economical Benefits - Durability**

|          | Secon           | dary roads       |                  |
|----------|-----------------|------------------|------------------|
| Туре     | 15% Lowel level | European average | 85% Higher level |
| ABT      | 10              | 15               | 20               |
| AC-TL    | 10              | 15               | 20               |
| AC-VTL   | 10              | 12               | 14               |
| 2L-PA 1) | 10              | 11               | 12               |
| ABS      | 16              | 20               | 25               |
| HRA      | 20              | 25               | 30               |
| Mastic-A | 18              | 24               | 30               |
| Soft-A   | 8               | 12               | 25               |

Source: EAPA



# **Economical /Ecological Benefits – The Proof of Life**

#### Two test sections

- First in 2002, 1.500 m long, ABS with pen bitumen; reference mix ABT with pen bitumen
- Second in 2013, 1000 m long, ABS with PMB; reference mix ABT with PmB



#### Section I

#### **Description**

- Highway: Autopista central
- Year: 2002 (milled and repaved in 2021)
- Stretch: from km 17+500 to km 16+000
- Asphalt mix:
  - o 5 cm ABS 11
  - o Reference mix: 6 cm ABT 11
- Traffic: 12,000 heavy vehicles/day





# **Economical Aspects of Section I: Maintenance**

HDM4 vs. Real data (section I)

[Highway Design and Maintenance Standards Model – PIARC]

| Reference Mix: ABT 11   | VOLUME OF WORK |      |      |      |      |       |      |      |      |      |       |      |      |      |      |       |      |      |      |      |       |
|-------------------------|----------------|------|------|------|------|-------|------|------|------|------|-------|------|------|------|------|-------|------|------|------|------|-------|
| Actividades             | 2003           | 2004 | 2005 | 2006 | 2007 | 2008  | 2009 | 2010 | 2011 | 2012 | 2013  | 2014 | 2015 | 2016 | 2017 | 2018  | 2019 | 2020 | 2021 | 2022 | Total |
| Crack sealing [ml]      |                |      |      | 240  |      |       |      | 180  |      | 340  |       |      | 130  |      | 410  |       |      | 130  |      | 380  | 1.810 |
| Milling & repaving [m²] |                |      |      |      |      | 2.265 |      |      | 906  |      | 3.172 |      |      | 906  |      |       |      |      |      | 453  | 7.702 |
| Repaving [m²]           |                |      |      |      |      |       |      |      |      |      |       |      |      |      |      | 9.062 |      |      |      |      | 9.062 |

| ABS 11 VOLUME OF WORK   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |      |       |
|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|-------|
| Actividades             | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021  | 2022 | Total |
| Crack sealing [ml]      |      |      |      |      | 92   |      | 184  |      |      | 290  | 310  | 156  |      | 210  |      |      |      | 250  |       |      | 1.492 |
| Milling & repaving [m²] |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 703  |      |      |      |       |      | 703   |
| Repaving [m²]           |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 9.062 |      | 9.062 |

Crack sealing: -18 %; Milling and repaving: -91%!!!

## **Economical Aspects of Section I: One Full Cycle**

**Initial construction plus maintenance** 

**HDM4 vs. Real data (segment I)** 

[Highway Design and Maintenance Standards Model – PIARC]

Tabla 70. Coste de construcción y conservación de tramo en estudio (9.000 m²)

| Tipo Mezcla Rodadura | Total construcción,  | Total       | Total, USD |  |
|----------------------|----------------------|-------------|------------|--|
| 6 cm ABT 11          | 86.798               | 223.476     | 310.274    |  |
| 5 cm ABS 11          | 113.399              | 82.057      | 195.456    |  |
| Diferencia %         | +31%                 | -63%        | -37%       |  |
|                      | Initial construction | Maintenance | Total      |  |



#### Section II

#### **Description**

Highway: Autopista central

Year: 2013

Stretch: from km 1+600 to km 0+600

Asphalt mix:

o 3 cm ABS 11; bitumen content 6,8 % (PmB)

o Reference mix: 5 cm ABT 16; bitumen content 5,3 %

Traffic: 12.000 heavy vehicles/day



# **Ecological Aspects - Sustainability**

#### Assessment of the environmental impact with Eurovia's GAIA II software

Green House Gas Emissions (kg CO<sub>2</sub>eq)



Production: +10 %





# **Ecological Aspects - Sustainability**

Assessment of the full life cycle environmental impact with Eurovia's





#### **Conclusions**

- ABS mixes offer great savings
- Savings in ABS The MultisTool

# Durable - Sustainable - Environmentally Friendly

- Incorporation of reclaimed asphalt pavement (RAP) is possible
- ABS represents the most sustainable option for asphalt paving



# Thanks a lot for your kind attention